Biquantization of Lie bialgebras

نویسنده

  • Christian Kassel
چکیده

For any finite-dimensional Lie bialgebra g, we construct a bialgebra Au,v(g) over the ring C[u][[v]], which quantizes simultaneously the universal enveloping bialgebra U(g), the bialgebra dual to U(g), and the symmetric bialgebra S(g). Following [Tur89], we call Au,v(g) a biquantization of S(g). We show that the bialgebra Au,v(g ) quantizing U(g), U(g), and S(g) is essentially dual to the bialgebra obtained from Au,v(g) by exchanging u and v. Thus, Au,v(g) contains all information about the quantization of g. Our construction extends Etingof and Kazhdan’s one-variable quantization of U(g) [EK96]. Mathematics Subject Classification (1991): 17B37, 17B99, 16W30, 53C15, 81R50

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Braided Lie Bialgebras

We introduce braided Lie bialgebras as the infinitesimal version of braided groups. They are Lie algebras and Lie coalgebras with the coboundary of the Lie cobracket an infinitesimal braiding. We provide theorems of transmutation, Lie biproduct, bosonisation and double-bosonisation relating braided Lie bialgebras to usual Lie bialgebras. Among the results, the kernel of any split projection of ...

متن کامل

Double Bicrossproduct Lie Bialgebras

We construct double biproduct, bicrossproduct, double crossproduct, double bicrossproduct Lie bialgebras from braided Lie bialgebras. The relations between them are found. The main result generalizes Majid’s matched pair of Lie algebras, Drinfeld’s quantum double of Lie bialgebras, and Masuoka’s cross product Lie bialgebras. Some properties of double biproduct Lie bialgebras are given. In the a...

متن کامل

Double Cross Biproduct and Bicycle Bicrossproduct Lie Bialgebras

We construct double cross biproduct and bicycle bicrossproduct Lie bialgebras from braided Lie bialgebras. The main result generalizes Majid’s matched pair of Lie algebras, Drinfeld’s quantum double, and Masuoka’s cross product Lie bialgebras. 2000 Mathematics Subject Classification: 17B62, 18D35

متن کامل

Generalized Lie Bialgebras and Jacobi Structures on Lie Groups

We study generalized Lie bialgebroids over a single point, that is, generalized Lie bialgebras. Lie bialgebras are examples of generalized Lie bialgebras. Moreover, we prove that the last ones can be considered as the infinitesimal invariants of Lie groups endowed with a certain type of Jacobi structures. We also propose a method to obtain generalized Lie bialgebras. It is a generalization of t...

متن کامل

Braided-Lie bialgebras associated to Kac–Moody algebras

Braided-Lie bialgebras have been introduced by Majid, as the Lie versions of Hopf algebras in braided categories. In this paper we extend previous work of Majid and of ours to show that there is a braided-Lie bialgebra associated to each inclusion of Kac–Moody bialgebras. Doing so, we obtain many new examples of infinite-dimensional braided-Lie bialgebras. We analyze further the case of untwist...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1990